In the beginning God created the heavens and the earth

Hanno Rein

DAMTP, Cambridge University

April 15, 2008

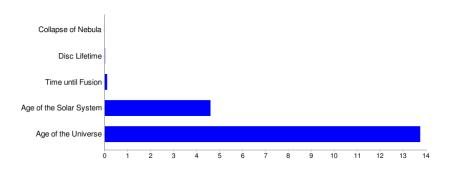
In the beginning God created the heavens and the earth.

The earth was without form and void, and darkness was over the face of the deep. And the Spirit of God was hovering over the face of the waters.

And God said, Let there be light, and there was light. And God saw that the light was good. And God separated the light from the darkness. God called the light Day, and the darkness he called Night. And there was evening and there was morning, the first day.

ESV, Genesis 1

Introduction


Overview of the Evolution of the Universe Planet Formation

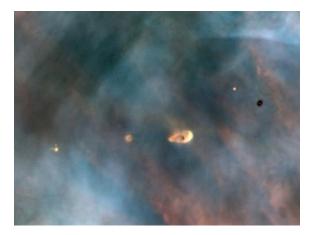
Resonances Different Systems in Resonance Extrasolar Planets in Resonance Resonance Capture

First Results HD108874

Overview of the Evolution of the Universe Planet Formation

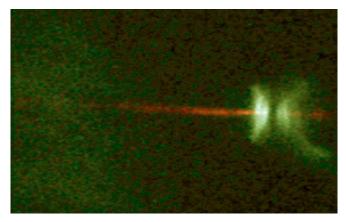
Timescales

Overview of the Evolution of the Universe Planet Formation


Orion

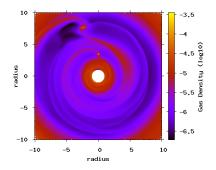
Credit: Hanno Rein

Overview of the Evolution of the Universe Planet Formation


Protoplanetary Discs in Orion

Credit: C.R. O'Dell, NASA

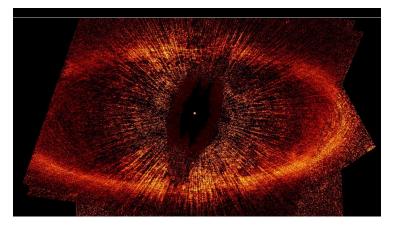
Overview of the Evolution of the Universe Planet Formation


Protoplanetary Disc

Credit: C. Burrows, WFPC2, NASA

Overview of the Evolution of the Universe Planet Formation

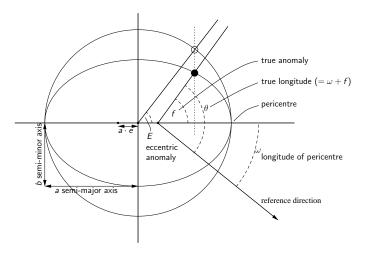
Planet Formation inside Disc


Different models of the early phase:

- Gravitational Fragmentation
- Core Accretion

Credit: Hanno Rein

Overview of the Evolution of the Universe Planet Formation


Debris Disc

Credit: NASA, ESA, P. Kalas, J. Graham, M. Clampin

Different Systems in Resonance Extrasolar Planets in Resonance Resonance Capture

Ellipse

Different Systems in Resonance Extrasolar Planets in Resonance Resonance Capture

Mean Motion Resonance

Keppler's third law

$$\frac{p}{q} = \frac{T_1}{T_2} = \left(\frac{a_1}{a_2}\right)^{1.5}$$

p, q are small integers

Resonant angles

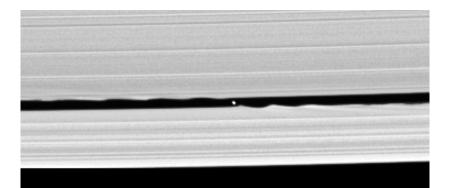
$$egin{aligned} \Deltaar{\omega} &= ar{\omega}_1 - ar{\omega}_2 \ \psi_1 &= p\lambda_2 - q\lambda_1 - (p-q)ar{\omega}_1 \end{aligned}$$

 $\bar{\omega}_i$ longitude of periastron λ_i mean longitude

Different Systems in Resonance Extrasolar Planets in Resonance Resonance Capture

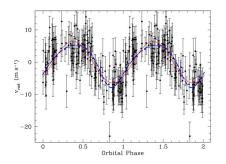
Jupiter Satellites

Credit: NASA, JPL, DLR


Different Systems in Resonance Extrasolar Planets in Resonance Resonance Capture

Saturn Rings

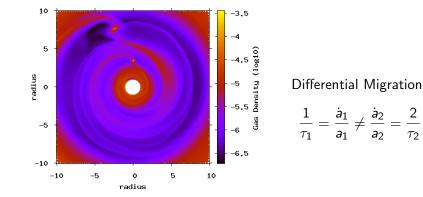
Different Systems in Resonance Extrasolar Planets in Resonance Resonance Capture


Saturn Rings and Daphnis

Credit: NASA, JPL, Space Science Institute

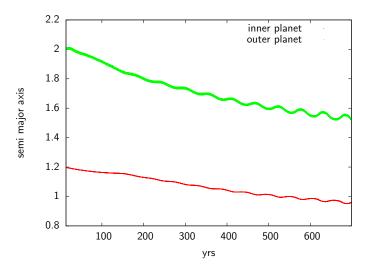
Different Systems in Resonance Extrasolar Planets in Resonance Resonance Capture

GJ876 - Observations

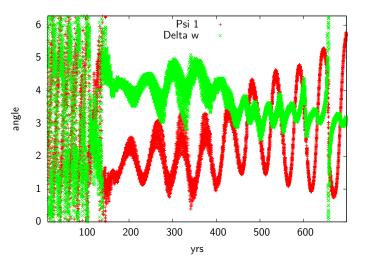

Credit: Rivera et al. 2005

Best fit (Butler et al., 2006)

<i>M</i> sin <i>i</i>	a (AU)	е
1.93	0.208	0.0249
0.619	0.1303	0.2243
0.0185	0.0208	-


Different Systems in Resonance Extrasolar Planets in Resonance Resonance Capture

Resonance Capture



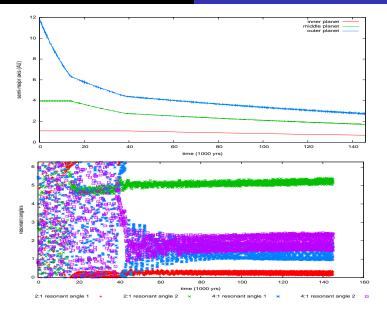
Credit: Hanno Rein

HD108874

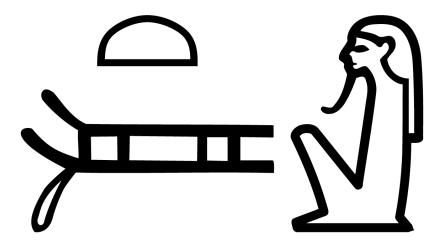
HD 108874

Credit: POSSI

HD108874


Observed Orbital Parameters

	$M \sin i (M_J)$	a (AU)	е
HD108874b	1.37(12)	1.055(61)	0.068(24)
HD108874c	1.02(10)	2.68(17)	0.253(42)


$$\left(\frac{2.68}{1.055}\right)^{1.5} \approx 4.04$$

HD108874

