
Finite-Time Singularities
Hanno Rein

St John’s College, University of Cambridge

I declare that this essay is work done as part of the Part III Exam-
ination. It is the result of my own work, and except where stated
otherwise, includes nothing which was performed in collaboration.
No part of this essay has been submitted for a degree or any such
qualification.

SignedH.a.n.n.o...R.e.i.n................

Contact address:

Hanno Rein
Kieferweg 10
72810 Gomaringen
Germany

http://hanno-rein.de

Contents

1 Introduction 3
1.1 Derivation of differential equations 4
1.2 Boundary conditions . 5

2 Numerical methods 5
2.1 Spectral methods . 5
2.2 Finite difference scheme . 6
2.3 Integration . 6
2.4 One time step iteration . 6

3 Results 7
3.1 Order tests . 7

3.1.1 Order in ∆t . 7
3.1.2 Order in dy . 7
3.1.3 Order in dx . 8

3.2 Singularities . 10
3.2.1 Most symmetric initial condition 10
3.2.2 x4 initial condition . 14

4 Conclusions 18

A References 19

B Colour plots of the simulation 3.2.1 20

C Colour plots of the simulation 3.2.2 24

D Source Code Listings 28

Finite-Time Singularities Page 3 Hanno Rein

1 Introduction

In this essay I am solving an asymptotic approximation of the Euler equations
for an inviscid and incompressible perfect fluid in two dimensions. The aim is
to start with a smooth initial solution, propagate it through time and find a
singularity within finite time. The appearance of a singularity is contrary to
the believe that a smooth initial solution of the Navier-Stokes equations remains
smooth for all times. Thus a study of the singularity can provide an insight into
the nature of the breakdown of the asymptotic approximation I am using.
In the following I say that a singularity is forming if a quantity in the simulation
or their derivatives is growing very fast (exponentially) and without any bound.
On might think that the breakdown is due to viscosity but the same behaviour
was found in a three dimensional inviscid flow [see Souza and Cowley, 2006]. I
try to find a similar behaviour in a two dimensional system.
First of all this will be of pure theoretical interest. However, from a physical
point of view one can understand the breakdown as a stall. Consequently this
research could also become important in a practical environment like aircraft
construction.

In section one I derive the differential equations including the corresponding
boundary conditions that I solve during the essay later on.
The methods I use to solve the equations numerically are explained in section
two. This includes a spectral method and a finite difference scheme. I also
explain in detail how I evolve the equations through time.
Section three contains my results. First of all I check that my scheme is actually
solving the differential equation correctly to high order. Secondly I display the
results for two different initial conditions where singularities form and work out
different parameters of the singularity such as speed and time of formation.
The results are finally discussed in section four.
The appendix consists of additional colour plots and my complete C++ source
code.

x

y

~n

H

L

~u · ~n = 0

Figure 1: Long pipe setup

Finite-Time Singularities Page 4 Hanno Rein

1.1 Derivation of differential equations

Let ρ be the density, p the pressure and ~u = (u, v)T the velocity for an inviscous
fluid in two dimensions. Then the Navier-Stokes equations are

∂ρ

∂t
+∇ρ~u = 0

ρ

(
∂

∂t
+ ~u · ∇

)
~u = 0.

If we set ρ constant and rescale p they simplify to

∇ · ~u = 0
∂u

∂t
+ (~u · ∇)u = −∂p

∂x
∂v

∂t
+ (~u · ∇) v = −∂p

∂y
.

We are in particular interested in a flow through a pipe where the height H is
much smaller than the length L (see figure 1). Therefore we make a coordinate
transformation and rescale the x-coordinate

x → x′ = εx (1)

where ε is small because x is large compared to y. After this transformation
the x and y coordinates have the same order of magnitude. The other variables
transform like

t → t′ = εt

y → y′ = y

v → v′ =
∂y′

∂t′
=

1
ε

∂y

∂t
=

1
ε
v (2)

u → u′ = u

p → p′ = p.

After this transformation the equations we have to solve are (we drop the ′)

�ε
∂u

∂x
+ �ε

∂v

∂y
= 0

�ε
∂u

∂t
+ �εu

∂u

∂x
+ �εv

∂u

∂y
= −�ε

∂p

∂x

ε2
∂v

∂t
+ ε2u

∂v

∂x
+ ε2v

∂v

∂y
= −∂p

∂y
.

Now let ε → 0. We finally get
∂u

∂x
+

∂v

∂y
= 0 (3)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g (4)

0 = −∂p

∂y
(5)

where we have defined

g :=
∂p

∂x
because the constant term of p is not of interest in the further discussion.

Finite-Time Singularities Page 5 Hanno Rein

1.2 Boundary conditions

The boundary conditions on the boundaries y = 0 and y = Y (x) are

v
∣∣
y=0

= 0

~u · ~n
∣∣
y=Y (x)

= 0,

where ~n =
(
−∂Y (x)

∂x , 1
)T

. After the transformations (1) and (2) these conditions
remain unchanged. I will not use the most general conditions derived here but
set Y (x) = 1 = const during all the computations. Thus ~n = (0, 1) which
simply implies v = 0 on the surfaces y = 0 and y = 1. The boundary conditions
on the surfaces x = 0 and x = L are discussed in the next section.

2 Numerical methods

4,6

x

y

N points

1,3 1,4

2,1 2,2 2,3

1,1 1,2

3,1 3,2 3,3

2,4

3,4

2,5

1,5

4,54,1 4,2 4,3 4,4

1,6

2,6
M points

dx
dy

3,5 3,6

Figure 2: Grid Point Setup.

We assume a periodic boundary in the x-direction. That gives us the change to
use a high accuracy spectral method to calculate derivatives in this direction.
In the y-direction we work with a centered second order finite difference scheme.
The grid point setup is shown in figure 2. I put grid points on the boundaries
to simplify the numerical schemes and minimise errors.

2.1 Spectral methods

The derivatives in the x-direction which we have to calculate are ∂u
∂x , ∂p

∂x . This
is done with a Fourier series to get a high order accuracy. I use the FFTW
package [see Frigo and Johnson, 2006] for all Fourier transformations. One
transformation needs O(n log n) operations. To minimize numerical errors I
make it possible to set all modes explicitly to zero which have a norm less then
a given value δ. It turns out that these unphysical modes grow exponentially
and create large oscillations that break down the simulation even before the
“physical” singularity appears. In practice this noise appears at an order of
magnitude of about 10−11 − 10−13. Thus δ ≈ 10−10 works well in most cases.

Finite-Time Singularities Page 6 Hanno Rein

2.2 Finite difference scheme

In the y-direction a standard second oder finite difference scheme has been used
to approximate ∂u

∂y .

u_y[i][j] = (u[i][j+1]-u[i][j-1]) / (2*dy)

We don’t have to worry about a single-sided finite difference scheme at the
boundary because v|boundary = 0 and so we do not need to calculate the deriva-
tive ∂u

∂y at all to evaluate (4).

2.3 Integration

The integrations in the y-direction are calculated with the standard Euler rule
to ensure second order accuracy. It is essential that the boundary terms are
weighted correctly. Otherwise we loose an order in the accuracy.

2.4 One time step iteration

This section shows how I perform a single timestep for a given initial solution.
Suppose we have the values u0, v0, g0 at a time t = 0.

• We first calculate

f0(u, v) := −u
∂u

∂x
− v

∂v

∂y

using the methods discussed above. If we calculated f−1 one timestep
earlier we could predict the value of f 1

2
at t = 1

2dt to second order accuracy
in time using the formula

f 1
2

= f0 +
1
2
dt

∂f

∂t

= f0 +
1
2
dt

f0 − f−1

dt

=
3
2
f0 −

1
2
f−1.

This formula will be used after we have done the first timestep and f−1 is
available. Thus the first timestep is still of first order. However, it turns
out that this does not change the overall order. Otherwise we could solve
this problem with a smaller timestep during the first few steps.

• Integrating equation (3) from 0 to the top Y (x), evaluated at the new
timestep t = dt and using the definition of f 1

2
gives∫ Y (x)

0

∂

∂x

(
u0 + dt

(
f 1

2
− 1

2
g0 −

1
2
g1

))
dy

= −
∫ Y (x)

0

∂v

∂y
dy = −v (Y (x)) + v(0) = 0.

This equation is of second order accuracy in time. Every quantity except
g1 is known. Thus this can be used to calculate g1 except its constant term
which is unavailable because of the x-derivative. During this calculation
we do not change the constant term of g.

Finite-Time Singularities Page 7 Hanno Rein

• Now we can easily calculate the new values of u and v at t = dt:

u1(x, y) = u0 + dt ·
(

f 1
2
− 1

2
g0 −

1
2
g1

)
(6)

v1(x, y) = −
∫ y

0

∂u1

∂x
dy. (7)

3 Results

3.1 Order tests

During this section I use the following initial conditions for u at t = 0:

u[i][j] = sin
(

i

L
· 2π

)
· sin

(
j

H
· 2π

)
(8)

where L and H are the simulation’s length and height (see figure 1). To be
consistent with the boundary conditions I use equation (7) to get v|x][y] at
t = 0. The pressure is set to an (arbitrary) constant value.
I choose these conditions because on the one hand they are smooth at the
beginning (t < 1) but on the other hand they also lead to a singularity for large
t (t ≈ 1.6). This enables me to do order tests and singularity exploration with
the same data.
To get an estimate error I do one run with a high accuracy and calculate the
difference between the final timesteps of the best and all the other runs using a
2-norm

erΣ(run) ≈

√√√√ N∑
i=1

M∑
j=1

(
urun[i][j]− ubest[i][j]

)2
.

Note that if I vary the number of grid points I can only sum over those grid
points that are at the same position during every run to get a meaningful error
estimation.

3.1.1 Order in ∆t

For the order test in ∆t I use a 100 times 100 grid and a final time tend = 0.2.
The timesteps computed are ∆t = 0.0001, 0.0002, 0.0004, 0.0008, 0.001, 0.002,
0.004, 0.00625, 0.008, 0.01. The square-root of the error is plotted as a function
of ∆t in figure 3. As one can see the scheme is second order in time. However,
it should be pointed out that the accuracy of the scheme decreases when I
use a timestep much smaller than 0.00001. This is expected and due to the
accumulation of numerical errors which inevitably occur.

3.1.2 Order in dy

Again I use a final time tend = 0.2 and N = 100 grid points in the x-direction.
The timestep is fixed at ∆t = 0.001. I vary the number of grid points in the y-
direction from M = 51, 61, 71, 81, 91, 101, 151, 201, 301, 401, 501, 601, 701 to 801.
The odd numbers ensure that I have grid points in the middle of the y-direction.
I need them to calculate the difference between grid points from various runs at
the same position. Again the scheme is second order, as one can see in figure 4.

Finite-Time Singularities Page 8 Hanno Rein

3.1.3 Order in dx

The order in dx is not as easy to determine as before due to the high accuracy
that the scheme has. The accumulated error is plotted in figure 5 using tend =
0.2, ∆t = 0.001 and M = 100. It vanishes in the limit dx → 0 as expected.
However, one might think that it is not even first order by looking at the plot.
But one has to keep in mind that this is the accumulated error erΣ. For example,
the error at a single grid point at dx = 0.002 is approximately

erΣ ·
1
M

· 1
N
≈ 8 · 10−8 · 1

100
· 1
500

= 1.6 · 10−12

But this is already the scale where computational errors have to be taken into
account and thus what is plottet in figure 5 is a sum of the computational and
schematic errors.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

(e
rro

r)1/
2

dt

Data points
Best quadratic fit

Figure 3: Plot of the square root of the accumulated error erΣ as a function of
the timestep ∆t.

Finite-Time Singularities Page 9 Hanno Rein

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

(e
rro

r)1/
2

dy

Data points
Best quadratic fit

Figure 4: Plot of the square root of the accumulated error erΣ as a function of
the grid-width dy.

 0

 5e-08

 1e-07

 1.5e-07

 2e-07

 2.5e-07

 3e-07

 3.5e-07

 4e-07

 4.5e-07

 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

er
ro

r

dx

Data points

Figure 5: Plot of the accumulated error erΣ as a function of the grid-width dx.

Finite-Time Singularities Page 10 Hanno Rein

3.2 Singularities

3.2.1 Most symmetric initial condition

The most symmetric non trivial initial condition is given by equation (8). This
corresponds to two contrariwise spinning vertices as one can see in figure 6. The
length and direction of each arrow corresponds to the velocity at this point. See
also appendix B for colour plots.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y

x

Figure 6: Velocity arrow plot of the initial conditions given by equation (8).

It turns out that a singularity forms at a time tcrit ≈ 1.6. Just before the
numerical scheme breaks down because the spectral methods cannot handle a
step function. In figure 7 the value

Θ =
1

maxi,j

∣∣∣∂u[i][j]
∂x

∣∣∣ = min
i,j

∣∣∣∣∣ 1
∂u[i][j]

∂x

∣∣∣∣∣
is plotted as a function of time for various parameters. In the limit N → ∞,
M → ∞ and ∆t → 0 one can see that this goes to zero as t → tcrit, so
∂u/∂x →∞. This coincides with my definition of a singularity given earlier. The
best linear fit in the range [1.2 : 1.5] for the high accuracy run with N = 400,
M = 400, ∆t = 0.00025 gives tcrit = (1.5650± 0.0004).
The velocity in the x-direction at a fixed value of y is u(x, y = 1

3H, t) =: u1/3(x, t)
and is plotted for various times in figure 8. The profile steepens as t → tcrit.
This finally leads to the singularity. The Fourier mode coefficients of u1/3(x, t)
are plotted in figure 9 for t = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5. The simulation
uses ∆t = 0.0001, M = 40 and N = 500. The numerical noise at large k does
not interfere the simulation, so I do not need to suppress it yet. However, at

Finite-Time Singularities Page 11 Hanno Rein

t = 1.5 the plot shows clearly some numerical oscillations. One can see that the
spectrum flattens as t → tcrit. This spectrum can be approximated by

u1/3(k, t) = ũ(t) · e−α(t)k. (9)

Where it is important that the coefficient α(t) is dependent on time. A small
value of α corresponds to a flat spectrum. So we expect α → 0 as t → tcrit. Thus
the time dependence can be used to study the formation time of the singularity
and is plotted in figure 10. Therefore I fit the spectrum in each case manually
only in the range where it is linear in figure 9. Then I use a linear and a quadratic
function as a first approximation to the behavior of α near tcrit. This gives the
new values of tcrit = (1.46± 0.15) in the linear and tcrit = (1.51± 0.13) in the
quadratic case. Note that these numbers have an error of about 10%. This is
mainly due to the difficulty of fitting the behaviour of u1/3(k, t) because it is not
exactly the one used in equation (9). Also the real behaviour α is neither linear
nor quadratic.
It is also possible to do this discussion with the pressure gradient g(x) instead
of u(x, y = H/3) as in the next section. However, it turns out that the pressure
gradient is very small (≈ 10−6) at the beginning, so the numerical error is larger.
Another property of the singularity is its speed at the moment of formation. I
therefore calculate the location of the maximum slope of u1/3(x, t) and call this
quantity say xm(t). In figure 11 the positions of the global and local maxima
are plotted as a function of time. The singularity forms at x = 0.5. One can
see that with this initial configuration it’s location is not changing at all. Thus
dxm

dt = 0. The other maxima at x ≈ 0.2 and x ≈ 0.8 do not form singularities.
We will see a more interesting behaviour of this quantity in the next section.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

m
in

(1
/u

x)

time t

N=M=400 dt=0.00025
N=M=200 dt=0.0005
N=M=100, dt=0.001

N=M=50, dt=0.002
Linear fit to the N=M=400 run

Figure 7: Plot of Θ = mini,j |1/∂u[i][j]
∂x |. The best linear fit in the range [1.2 : 1.5]

gives tcrit = (1.5650± 0.0004).

Finite-Time Singularities Page 12 Hanno Rein

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400 450 500

u(
x,

y=
M

/3
)

x

t=0.0
t=0.4
t=0.8
t=1.2
t=1.5

Figure 8: The solution for u1/3(x, t) = u(x, y = 1/3H, t) at various times. This
run uses ∆t = 0.0001, M = 40 and N = 500.

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 50 100 150 200 250

Fo
ur

ie
r c

oe
ffi

cie
nt

 u
k

Fourier mode k

t=0.1t=0.3t=0.5t=0.7t=0.9t=0.11t=0.13t=0.15

Figure 9: Plot of the Fourier coefficients of u at y = 1
3M . No cut-off δ was used

in this run. One can see the numerical noise growing at large k and late times.

Finite-Time Singularities Page 13 Hanno Rein

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

!

time t

M=40, N=500, dt=0.0001
M=80, N=1000, dt=0.00005

Best linear fit to the N=1000 run
Best quadratic fit to the N=1000 run

Figure 10: Plot of coefficient α. The errorbars represent the residual error of
the fit.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Po
sit

io
n

of
 th

e
tu

rn
in

g
po

in
t o

f u
(x

,y
=M

/3
)

Time t

Data

Figure 11: Positions where the slope of u1/3(x, t) is a local maximum. At times
t > 1.4 oscillations occur. The detection of the maximal slope is no longer
possible.

Finite-Time Singularities Page 14 Hanno Rein

3.2.2 x4 initial condition

Now I use these initial conditions for u at t = 0

u[i][j] = sin
(

i

L
· 2π

)
·

[
− 10

(
j

H

)4

+ 1.8
(

j

H

)2

− 0.025

]
.

Again I use equation (7) to get v[i][j] at t = 0. The special parameters -10,
1.8, -0.025 ensure that the boundary conditions are satisfied. As in the previous
example a singularity forms. This time the scheme breaks down at tBD ≈ 1.5.
The behavior of

Θ = min
i,j

∣∣∣∣∣ 1
∂u[i][j]

∂x

∣∣∣∣∣
is plotted in figure 12 as a function of time. One can see that the result depends
very strongly on the grid-width dx. This is due to the fact that at times t ≈ tcrit

the velocity profile v has structures of size dx (see also pictures in appendix C).
At this point the scheme is in a quasi stable configuration which results in the
plateau shown in figure 12. However, sooner or later oscillations break down
the scheme completely. I plotted the height of this plateau hθ(dx) as a function
of the grid-width in figure 13. On can see that hθ(dx) → 0 as dx → 0. Thus
u[i][j] →∞ as t → tcrit. This shows that we are looking at a real and not just
a computational singularity.
The best linear fit to Θ in the high accuracy run (N = M = 400, ∆t = 0.00025)
in the range [1.0 : 1.1] gives a singularity forming time tcrit = (1.1590±0.0002).
Note that this is much smaller than the time when the scheme break down
(t ≈ 1.5).
Notice also the kink in figure 12 at t ≈ 0.9. Although this looks very dramatic
nothing special happens. The kink appears because the position of the maximum
of ∂u[i][j]

∂x changes. A local maximum becomes the new global one.
In the previous section I discussed the behaviour of u1/3(x, t). This time I con-
centrate on the pressure gradient g(x, t). This quantity is already independent
of y. We do not need to specify a privileged line y = const. However, there is
no systematic difference between the two. The Fourier coefficients of g(x, t) are
shown in figure 14 at times t = 0.05, 0.25, 0.50, 0.75, 1.00 and 1.25. Again, we
see that the spectrum flattens as t → tcrit. As before, it can be approximated
by equation (9) in an appropriate interval. The result, the time-dependence of
the parameter α, is plotted for two different runs in figure 15. At late times
(t > 0.25) the behaviour is linear. The best linear fit in this range gives a new
singularity formation time tcrit = (1.20± 0.01).
The last thing to look at is the singularity speed. I calculate the location of the
maximum slope xm(t) as in the previous section. Figure 16 shows this quantity
as a function of time. At the beginning we have the maximum constant at
x = 0.5. Then two new maxima appear and move away from x = 0.5. Unlike
in the first example, they stop, turn around and move back towards x = 0.5.
Surprisingly they seem to arrive there exactly at the time tcrit. To verify this, I
plot the interesting region of figure 16 in figure 17 again and use a linear fit to
extrapolate the behaviour close to tcrit. I get tcrit = (1.152± 0.002) if I assume
that xm(t) = 0.5 at tcrit.

Finite-Time Singularities Page 15 Hanno Rein

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 0.5 1 1.5 2

m
in

(1
/u

x)

time t

N=M=400 dt=0.00025
N=M=200 dt=0.0005
N=M=150 dt=0.0005
N=M=100, dt=0.001

N=M=80, dt=0.001
N=M=50, dt=0.002

Best linear fit to the N=M=400 run
N=M=400 Plateau
N=M=200 Plateau
N=M=150 Plateau
N=M=100 Plateau

N=M=80 Plateau
N=M=50 Plateau

Figure 12: Plot of mini,j |1/∂u[i][j]
∂x | with various accuracy. The plot also includes

the plateaus hθ(dx) at t → 1.5. At t ≈ 1.5 the numerical scheme breaks down.
The data afterwards can be ignored. The best linear fit in the range [1.0 : 1.1]
to the high accuracy run gives tcrit = (1.1590± 0.0002).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.005 0.01 0.015 0.02

Pl
at

ea
u

he
ig

ht

Gridwidth dx(=dy)

Data
Best linear fit

Figure 13: Plot of the plateau-height hθ(dx) as a function of grid-width and the
best linear fit.

Finite-Time Singularities Page 16 Hanno Rein

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 0 50 100 150 200 250

Fo
ur

ie
r c

oe
ffi

cie
nt

 g
k

Fourier mode k

t=0.05
t=0.25
t=0.50
t=0.75
t=1.00
t=1.25

Figure 14: Plot of the Fourier coeffecients g(k, t) at various timesteps with
M = 40, N = 1000, ∆t = 0.0001 and δ = 10−10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 0.2 0.4 0.6 0.8 1 1.2

sq
rt(
!

)

Time t

M=40, N=500, dt=0.0001
M=40, N=1000, dt=0.0001
Best linear fit in [0.25:1.2]

Figure 15: Plot of coeffecient
√

α. The errorbars represent the residual error of
the fit. The best linear fit gives tcrit = (1.20± 0.01).

Finite-Time Singularities Page 17 Hanno Rein

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2

Po
sit

io
n

of
 th

e
tu

rn
in

g
po

in
t o

f g
(x

)

Time t

Data

Figure 16: Positions where the slope of g(x, t) is a local maximum. I use M = 40,
N = 1000, ∆t = 0.0001 and δ = 10−10 during this run.

 0.5

 0.505

 0.51

 0.515

 0.52

 0.525

 0.53

 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

Po
sit

io
n

of
 th

e
tu

rn
in

g
po

in
t o

f g
(x

)

Time t

Data
Best linear fit in the range [1.0:1.1]

Figure 17: Positions where the slope of g(x, t) is a local maximum. This is
a closeup of figure 16. The best linear fit in the range [1.0:1.1] gives tcrit =
(1.142± 0.002).

Finite-Time Singularities Page 18 Hanno Rein

4 Conclusions

Let me point out again that the order tests in section 3.1 show clearly that my
code is solving the right equations to a high accuracy. During all the calculations
the required accuracy did not blow up the runtime beyond a few hours, thanks
to the second order schemes used. However, a possible extension to this project
would probably include a higher order scheme.
It is easy so find initial conditions that form a singularity sooner or later. Ac-
tually it is quite hard to find a non trivial one that does not. I discussed only
two of them in this essay because it would go beyond the scope of this essay
otherwise.
The results in section 3.2.1 show clearly that a singularity forms if I start with
the smooth inital conditions in equation (8). The breakdown of the numerical
scheme is due to the appearance of small structures or large k (see also figures
in appendix B). This is not only the breakdown of the scheme but also the
breakdown of the asymptotic assumption (with ε → 0) that is no longer valid.
The different methods of estimating the forming time tcrit give rise to quite
different values in the range 1.46 − 1.56. The large interval is due to several
reasons. Firstly, one could of course improve the accuracy by using more grid
points and smaller timesteps. However this would result in very long runtimes
and would also not improve every measured quantity. For example the coefficient
α cannot be approximated better if I simply add more grid-points because the
small oscillations (large k) are already below the machine accuracy (at early
times). Currently I use double precision variables. So an improvement would
cause a lot of trouble and a lot of additional computing time. Secondly the
large interval is due to the fact that it is very hard to fit a linear curve to the
power-spectrum in figure 9. I selected a convenient interval for the fit by hand.
This is a large source of error but no automated method worked good enough
for me.
All this also applies to the singularity in section 3.2.2. This time the interval of
tcrit is a bit smaller: 1.15 − 1.20. Again the method which uses the coefficient
α gives a value that seems a bit to large (tcrit = 1.20). The times that arise
from the other methods using the singularity speed and the maximum of u agree
with each other within the fit errors. Of course it could be just a coincidence
that these two times agree. However they do so well that it appears to be more
systematic.
There are several options for further work:

• It would be interesting if slightly different initial conditions to those used
in section 3.2.2 still provide the exciting feature of the match of the sin-
gularity forming times when using the singularity speed method.

• One could also try to find totally different initial conditions that show the
same or maybe a new behaviour.

• I used the special case Y (x) = const. One could do similar calculations
with a more general boundary condition.

• It should also be pointed out that one could improve the presented results
by using more computing time.

Unfortunately all this goes beyond the limited scope of this essay.

Finite-Time Singularities Page 19 Hanno Rein

A References

Paul Blackburn and Miguel Gea Milvaques. PNGwriter. Open source software
package, 2006. URL http://pngwriter.sourceforge.net/.

Matteo Frigo and Steven G. Johnson. FFTW. Open source software package,
2006. URL http://fftw.org/.

Wilhelm Kley. Skript zur Vorlesung Numerische Hydrodynamik. Lecture
notes, 2006. URL http://www.tat.physik.uni-tuebingen.de/∼kley/
lehre/numhydro/.

Culbert B. Laney. Computational Gas Dynamics. Cambridge University Press,
1998.

Max O. Souza and Stephen J. Cowley. On incipient vortex breakdown. J. Fluid
Mech., preprint, 2006. URL http://damtp.cam.ac.uk/people/cowley/
papers/incipient vbd.ps.

Finite-Time Singularities Page 20 Hanno Rein

B Colour plots of the simulation 3.2.1

I wrote the routine that creates the following colour plots. PNGwriter [Black-
burn and Milvaques, 2006] implements the export as a PNG image. The key to
the colours is plotted on the top of each image. Red corresponds to a value of
-1.1, yellow to a value of 1.1. All the plots are made with a timestep ∆t = 0.001
and a 100 times 100 grid.

(a) t = 0 (b) t = 0.222

(c) t = 0.444 (d) t = 0.666

Figure 18: Colour plots of the velocity in the x-direction u. Red corresponds to
a value of -1.1, black to 0 and yellow to 1.1.

Finite-Time Singularities Page 21 Hanno Rein

(e) t = 0.888 (f) t = 1.110

(g) t = 1.320 (h) t = 1.554

(i) t = 1.776

Figure 18: Continued.

Finite-Time Singularities Page 22 Hanno Rein

(a) t = 0 (b) t = 0.222

(c) t = 0.444 (d) t = 0.666

(e) t = 0.888 (f) t = 1.110

Figure 19: Colour plots of the velocity in the y-direction v. Red corresponds
to a value of -1.1, black to 0 and yellow to 1.1. A white colour is plotted if the
value is out of range.

Finite-Time Singularities Page 23 Hanno Rein

(g) t = 1.332 (h) t = 1.554

(i) t = 1.776

Figure 19: Continued.

Finite-Time Singularities Page 24 Hanno Rein

C Colour plots of the simulation 3.2.2

All the plots in this section are made with a timestep ∆t = 0.0001 and a 200
times 200 grid. Note especially the small structures of the size of a grid point
that form in the middle at late times.

(a) t = 0 (b) t = 0.1875

(c) t = 0.3750 (d) t = 0.5625

Figure 20: Colour plots of the velocity in the x-direction u. Red corresponds to
a value of -1.1, black to 0 and yellow to 1.1.

Finite-Time Singularities Page 25 Hanno Rein

(e) t = 0.7500 (f) t = 0.9375

(g) t = 1.1250 (h) t = 1.3125

(i) t = 1.5000

Figure 20: Continued.

Finite-Time Singularities Page 26 Hanno Rein

(a) t = 0 (b) t = 0.1875

(c) t = 0.3750 (d) t = 0.5625

(e) t = 0.7500 (f) t = 0.9375

Figure 21: Colour plots of the velocity in the y-direction v. Red corresponds to
a value of -0.2, black to 0 and yellow to 0.2.

Finite-Time Singularities Page 27 Hanno Rein

(e) t = 1.1250 (f) t = 1.3125

(g) t = 1.5000

Figure 21: Continued.

Finite-Time Singularities Page 28 Hanno Rein

D Source Code Listings

This section includes all the source code I wrote for this essay. It can be com-
piled using any C++ compiler and nearly every operating system. I tested it
under MacOSX 10.4 and Linux. Please note that the FFTW package has to
be installed and the libraries need to be linked. I did not find a good plotting
program to plot my two dimensional colour data. Therefore I wrote my own
plotting routine which can be found in the file picture.cpp.

Listing 1: main.h
1 /∗
2 ∗ main . h
3 ∗ Main header f i l e . Def ines o f t en used f unc t i on s .
4 ∗ Created by Hanno Rein .
5 ∗/
6

7 #include <complex . h>
8 #include <math . h>
9

10 //Functions
11

12 void i t e r a t e (double) ;
13 double Y(double) ;
14 double Y(int) ;
15 void haveugetv () ;
16 void s e t i n i t i a l c o n d i t i o n s () ;
17 void p r ed i c t f ab () ;
18 void p r e d i c t f a b b e t t e r () ;
19 void getg1 () ;
20 void d i f f u s i o nu () ;
21 void u j d e r i v a t i v e () ;
22 double max(double∗∗) ;
23 double max(double∗) ;
24

25 // Constants
26

27 complex<double> I (0 , 1 .) ;
28

29 // Var iab l e s

Listing 2: main.cpp
1 /∗
2 ∗ main . cpp
3 ∗ Main Fi le , i n c l u d e s a l l mathematical f unc t i on s .
4 ∗ Created by Hanno Rein .
5 ∗
6 ∗/
7

8 #include <iostream>
9 #include <f stream>

10 #include <complex>
11 #include <f f tw3 . h> // Fourier transform
12 #include <s t d i o . h>

Finite-Time Singularities Page 29 Hanno Rein

13 #include <math . h>
14 #include ” p i c tu r e . h” // Output p i c t u r e s
15 #include ”main . h”
16

17 using namespace std ;
18

19 // Precompi ler i n s t r u c t i o n s on what to p r i n t
20

21 //#de f i n e OUTPUT PICTURES 1
22 //#de f i n e OUTPUT TXT 1
23 //#de f i n e OUTPUT TXT G COEFF 1
24 //#de f i n e OUTPUT TXT U13 COEFF 1
25 //#de f i n e OUTPUT TXT G MAXSLOPE 1
26 //#de f i n e OUTPUT TXT U13 MAXSLOPE 1
27 //#de f i n e OUTPUT TXT MAXUX 1
28

29

30 // Precompi ler i n s t r u c t i o n on the p h y s i c a l parameters
31 #define N 1000 // Points in x

−d i r e c t i o n
32 #define M 40 //

Points in y−d i r e c t i o n
33 #define MISSPRINTX 1 // Do pr i n t

every MISSPRINTX gr i d po in t in the x−d i r e c t i o n
34 #define MISSPRINTY 1 // Do pr i n t

every MISSPRINTY gr i d po in t in the y−d i r e c t i o n
35 //#de f i n e ONLYPRINTY M−(M−1)/2−1
36 //#de f i n e ONLYPRINTY M/3
37 #define dt 0 .0001 // Timestep
38 #define s izeY 1 .0
39 #define dy (s izeY /(double) (M−1))
40 #define dx (1 . / (double) (N))
41

42 #define T 2 . // End
time

43 #define eps 1E−10 // Cuto f f
va lue (d e l t a)

44

45 #define p i c t u r e s 1000 // Number o f p i c t u r e s /
ou tpu t s genera ted

46 #define p i c t u r e s t a r t 0
47

48 int p i c s l i p =(int) ((T−p i c t u r e s t a r t) /(double) p i c t u r e s /dt) ;
49

50

51 // Grid v a r i a b l e s
52 double∗∗ u = new double ∗ [N] ;
53 double∗ uj = new double [N] ; // temp fo r f f t w
54 std : : complex<double>∗ c=new std : : complex<double> [N/2+1] ; //

temp fo r f f t w
55 double∗∗ v = new double ∗ [N] ;
56 double∗ g = new double [N] ; // p i s on ly x

dependent
57 double∗ g1 = new double [N] ;

Finite-Time Singularities Page 30 Hanno Rein

58 double∗∗ s = new double ∗ [N] ;
59 double∗∗ fab = new double ∗ [N] ;
60 double∗∗ f ab o l d = new double ∗ [N] ;
61 double∗∗ f ab o ld2 = new double ∗ [N] ;
62

63 // Var iab l e s f o r ou tpu t s o f var ious k inds
64 f s t ream o0 , o4 , o6 ;
65

66 //FFTW plans − p1 i s to transform in to momentum space , p2
trans forms back .

67 f f tw p l an p1 , p2 ;
68

69 //Tools f o r c a l c u l a t i o n o f max i j (∗)
70 double max(double∗ var) {
71 double temp = var [0] ;
72 for (int i =0; i<N; i++)
73 i f (temp<var [i]) temp=var [i] ;
74 return temp ;
75 }
76 double max(double∗∗ var) {
77 double temp = var [0] [0] ;
78 for (int i =0; i<N; i++)
79 for (int j =0; j<M; j++)
80 i f (temp<var [i] [j]) temp=var [i] [j] ;
81 return temp ;
82 }
83

84 // Output/ p i c t u r e func t i on
85 void p i c tu r e (int num, double t) {
86 char r e t [6 4] ;
87 #ifde f OUTPUT PICTURES
88 s p r i n t f (ret , ” . / png/u %d . png” ,num) ;
89 p i c tu r e (ret , u ,N,M) ;
90 s p r i n t f (ret , ” . / png/v %d . png” ,num) ;
91 p i c tu r e (ret , v ,N,M) ;
92 #endif
93 #ifde f OUTPUT TXT
94 s p r i n t f (ret , ” . / txt/%d . txt ” ,num) ;
95 f s t ream o1 ;
96 o1 . open (ret , i o s : : out) ;
97 for (int i =0; i<N; i++)
98 for (int j =0; j<M; j++)
99 #i f d e f MISSPRINTY

100 i f (i%MISSPRINTX==0&&j%MISSPRINTY==0)
o1 << i <<”\ t ”<< j <<”\ t ”<< u [i] [j
] <<”\ t ”<< v [i] [j] << endl ;

101 #end i f
102 #i f d e f ONLYPRINTY
103 i f (i%MISSPRINTX==0&&j==ONLYPRINTY) o1

<< i <<”\ t ”<< j <<”\ t ”<< u [i] [j]
<<”\ t ”<< v [i] [j] << endl ;

104 #end i f
105 o1 . c l o s e () ;
106 s p r i n t f (ret , ” . / txt /g%d . txt ” ,num) ;

Finite-Time Singularities Page 31 Hanno Rein

107 f s t ream o2 ;
108 o2 . open (ret , i o s : : out) ;
109 for (int i =0; i<N; i++)
110 o2 << i << ”\ t ” << g [i] << endl ;
111 o2 . c l o s e () ;
112 #endif
113

114 #ifde f OUTPUT TXT G COEFF
115 s p r i n t f (ret , ” . / txt / g c o e f f %d . txt ” ,num) ;
116 f s t ream o3 ;
117 o3 . open (ret , i o s : : out) ;
118 for (int i =0; i<N; i++)
119 uj [i]=g1 [i] ;
120 f f tw ex e cu t e (p1) ;
121 for (int i =0; i<N/2 ; i++)
122 o3 << i << ”\ t ” << abs (c [i]) << endl ;
123 o3 . c l o s e () ;
124 #endif
125 #ifde f OUTPUT TXT U13 COEFF
126 s p r i n t f (ret , ” . / txt / u 1 3 c o e f f %d . txt ” ,num) ;
127 f s t ream o5 ;
128 o5 . open (ret , i o s : : out) ;
129 for (int i =0; i<N; i++)
130 uj [i]=u [i] [M/ 3] ;
131 f f tw ex e cu t e (p1) ;
132 for (int i =0; i<N/2 ; i++)
133 o5 << i << ”\ t ” << abs (c [i])<< endl ;
134 o5 . c l o s e () ;
135 #endif
136 #ifde f OUTPUT TXT MAXUX
137 double temp = 0 . ;
138 for (int j =0; j<M; j++){
139 for (int i =0; i<N; i++)
140 uj [i]=u [i] [j] ;
141 u j d e r i v a t i v e () ;
142 for (int i =0; i<N; i++)
143 i f (temp<uj [i]) temp=uj [i] ;
144 }
145 o0 << t << ”\ t ” << temp << endl ;
146 #endif
147 #ifde f OUTPUT TXT G MAXSLOPE
148 double temp=−1.;
149 for (int i =0; i<N; i++)
150 uj [i]=g [i] ;
151 u j d e r i v a t i v e () ;
152 u j d e r i v a t i v e () ;
153 for (int i =0; i<N; i++){
154 i f (uj [i]∗ temp<=0) o4 << t << ”\ t ” << i <<

endl ;
155 temp=uj [i] ;
156 }
157 #endif
158 #ifde f OUTPUT TXT U13 MAXSLOPE
159 double temp=−1.;

Finite-Time Singularities Page 32 Hanno Rein

160 for (int i =0; i<N; i++)
161 uj [i]=u [i] [M/ 3] ;
162 u j d e r i v a t i v e () ;
163 u j d e r i v a t i v e () ;
164 for (int i =0; i<N; i++){
165 i f (uj [i]∗ temp<=0) o6 << t << ”\ t ” << i <<

endl ;
166 temp=uj [i] ;
167 }
168 #endif
169 }
170

171

172 // Main func t i on
173 int main (int argc , char ∗ const argv []) {
174 // I n i t ou tpu t s
175 #ifde f OUTPUT TXT G MAXSLOPE
176 char r e t [6 4] ;
177 s p r i n t f (ret , ” . / txt /gmaxslope . txt ”) ;
178 o4 . open (ret , i o s : : out) ;
179 #endif
180 #ifde f OUTPUT TXT U13 MAXSLOPE
181 char r e t [6 4] ;
182 s p r i n t f (ret , ” . / txt /u13maxslope . txt ”) ;
183 o6 . open (ret , i o s : : out) ;
184 #endif
185 #ifde f OUTPUT TXT MAXUX
186 char r e t [6 4] ;
187 s p r i n t f (ret , ” . / txt /maxuxx . txt ”) ;
188 o0 . open (ret , i o s : : out) ;
189 #endif
190

191 //Generate FFTW Plans
192 p1 = f f tw p l a n d f t r 2 c 1 d (N, uj , reinterpret cast<

f f tw complex∗>(c) , FFTW ESTIMATE) ;
193 p2 = f f tw p l a n d f t c 2 r 1 d (N, reinterpret cast<

f f tw complex∗>(c) , uj , FFTW ESTIMATE) ;
194

195 // I n i t i a l i s e Var iab l e s and s e t i n i t a l c ond i t i on s
196 s e t i n i t i a l c o n d i t i o n s () ;
197

198 // Main I t e r a t i o n loop
199 cout << ” S ta r t i ng I t e r a t i o n \n” ;
200 for (int i =0; i ∗dt<=T; i++){
201

202 i f (i%p i c s l i p ==0){
203 cout << ” t=” << i ∗dt << ”\ t i=” << i ;
204 i f (i ∗dt>=p i c t u r e s t a r t) {
205 p i c tu r e ((i −(int) (p i c t u r e s t a r t /

dt)) / p i c s l i p , i ∗dt) ;
206 cout << ”\ t p i c=” << (i −(int) (

p i c t u r e s t a r t /dt)) / p i c s l i p ;
207 }
208 cout << endl ;

Finite-Time Singularities Page 33 Hanno Rein

209 }
210 // Ca l l main i t e r a t i o n loop each t imes t ep
211 i t e r a t e ((double) i ∗dt) ;
212 }
213 return 0 ;
214 }
215

216 // I n i t i a l c ond i t i on s 2
217 double hgr (double x) {
218 double a=−10.;
219 double b=1.8 ;
220 double c=−0.025;
221

222 return a∗x∗x∗x∗x
223 +b∗x∗x
224 +c ;
225 }
226

227 // I n i t arrays and choose i n i t a l c ond i t i on s
228 void s e t i n i t i a l c o n d i t i o n s () {
229 for (int i =0; i<N; i++){
230 u [i] = new double [M] ;
231 v [i] = new double [M] ;
232 s [i] = new double [M] ;
233 fab [i] = new double [M] ;
234 f ab o l d [i] = new double [M] ;
235 f ab o ld2 [i] = new double [M] ;
236

237 //Generate i n i t i a l cond i t i on
238 for (int j =0; j<M; j++){
239 // I n i t i a l c ond i t i on s 1
240 // u [i] [j] = s in (((doub l e) j ∗dy/ sizeY)

∗2.∗M PI) ∗(cos (((doub l e) i ∗dx+0.25)
∗2.∗M PI)) ;

241 // I n i t i a l c ond i t i on s 2
242 u [i] [j] = 5 .∗ hgr ((double) j ∗dy/ sizeY

−0.5) ∗(cos (((double) i ∗dx+0.25) ∗2 .∗
M PI)) ;

243 }
244 // Set pre s sure g rad i en t to 0
245 g [i]=0 . ;
246 }
247 // Ca l cu l a t e v
248 haveugetv () ;
249 }
250

251 // Ca l cu l a t e d e r i v a t i v e
252 void u j d e r i v a t i v e () {
253 f f tw ex e cu t e (p1) ;
254 // d e r i v a t i v e
255 for (int i =0; i<N/2+1; i++)
256 c [i]∗= I ∗(double) i ;
257 f f tw ex e cu t e (p2) ;
258 for (int i =0; i<N; i++)

Finite-Time Singularities Page 34 Hanno Rein

259 // renormal i ze
260 uj [i]/=(double)N;
261 }
262

263 // Cut o f f sma l l v a l u e s i f eps i s de f ined
264 #ifde f eps
265 void c u t o f f c () {
266 for (int i =0; i<N/2+1; i++)
267 i f (abs (c [i])<eps) c [i]=0 . ;
268 }
269 #endif
270

271 void r emov e o s z i l l a t i o n s (double∗∗ d) {
272 #i f d e f eps
273 double renorm = sqr t ((double)N) ;
274 for (int j =0; j<M; j++){
275 for (int i =0; i<N; i++)
276 uj [i]=d [i] [j] ;
277 // renormal i ze
278 for (int i =0; i<N; i++)
279 uj [i]/=renorm ;
280 f f tw ex e cu t e (p1) ;
281 c u t o f f c () ;
282 f f tw ex e cu t e (p2) ;
283 for (int i =0; i<N; i++)
284 // renormal i ze
285 uj [i]/=renorm ;
286 for (int i =0; i<N; i++)
287 d [i] [j]=uj [i] ;
288 }
289 #end i f
290 }
291

292 void r emov e o s z i l l a t i o n s () {
293 #ifde f eps
294 r emov e o s z i l l a t i o n s (u) ;
295 r emov e o s z i l l a t i o n s (v) ;
296 #endif
297 }
298

299 // Main i t e r a t i o n func t i on − c a l l e d every t imes t ep once
300 void i t e r a t e (double t) {
301 i f (t==0){
302 // Do the f i r s t t imes t ep in f i r s t order
303 p r ed i c t f ab () ;
304 for (int i =0; i<N; i++)
305 for (int j =0; j<M; j++)
306 f ab o l d [i] [j] = fab [i] [j] ;
307 } else {
308 // Then sw i t ch to second order
309 p r e d i c t f a b b e t t e r () ;
310 }
311 // Get the new pres sure
312 getg1 () ;

Finite-Time Singularities Page 35 Hanno Rein

313 for (int i =0; i<N; i++)
314 g [i]=g1 [i] ;
315

316 // Get the new va l u e s f o r u and v
317 for (int i =0; i<N; i++)
318 for (int j =0; j<M; j++)
319 u [i] [j] = s [i] [j]−dt ∗0 .5∗ g1 [i] ;
320

321 haveugetv () ;
322 r emov e o s z i l l a t i o n s () ;
323 }
324

325 // Ca l cu l a t e s the pre s sure and uses fab
326 void getg1 () {
327 for (int j =0; j<M; j++)
328 for (int i =0; i<N; i++)
329 s [i] [j]=u [i] [j]+dt∗ fab [i] [j]−0.5∗ dt∗g [

i] ;
330

331 for (int i =0; i<N; i++)
332 uj [i]=0;
333

334 // Eulers r u l e (i s very s imple here)
335 for (int i =0; i<N; i++){
336 uj [i] += 0.5∗ (2 . / dt) ∗dy ∗ s [i] [0] ;
337 uj [i] += 0.5∗ (2 . / dt) ∗dy ∗ s [i] [M−1] ;
338 for (int j =1; j<M−1; j++){
339 uj [i]+= (2 . / dt) ∗dy ∗ s [i] [j] ;
340 }
341

342 }
343

344 f f tw ex e cu t e (p1) ;
345 c [0]= 0 . ;
346 #i f d e f eps
347 c u t o f f c () ;
348 #end i f
349 f f tw ex e cu t e (p2) ;
350 for (int i =0; i<N; i++)
351 // renormal i ze
352 uj [i]/=(double)N;
353 for (int i =0; i<N; i++)
354 g1 [i]= uj [i] ;
355 }
356

357 // Pred i c t i on s o f f ab − second order
358 void p r e d i c t f a b b e t t e r () {
359 p r ed i c t f ab () ;
360 for (int i =0; i<N; i++)
361 for (int j =0; j<M; j++)
362 f ab o ld2 [i] [j] = fab [i] [j] ;
363 for (int i =0; i<N; i++)
364 for (int j =0; j<M; j++)

Finite-Time Singularities Page 36 Hanno Rein

365 fab [i] [j] = fab [i] [j]∗3 ./2 . − f ab o l d [i
] [j] ∗ 1 . / 2 . ;

366

367 for (int i =0; i<N; i++)
368 for (int j =0; j<M; j++)
369 f ab o l d [i] [j] = f ab o ld2 [i] [j] ;
370 }
371

372 // Pred i c t i on s o f f ab − f i r s t order
373 void p r ed i c t f ab () {
374 for (int j =0; j<M; j++){
375 for (int i =0; i<N; i++)
376 uj [i]=u [i] [j] ;
377 u j d e r i v a t i v e () ;
378

379 for (int i =0; i<N; i++){
380 fab [i] [j] = −u [i] [j]∗ uj [i] ;
381 switch (j) {
382 case 0 :
383 //one s i d e on ly (not used)
384 fab [i] [j] −=
385 v [i] [j] / (2 . ∗ dy) ∗

(4 .∗ u [i] [j
+1]−u [i] [j +2]−3.∗u
[i] [j])

386 ;
387 break ;
388 case M−1:
389 //one s i d e on ly (not used)
390 fab [i] [j] −=
391 v [i] [j] / (2 . ∗ dy) ∗

(−4.∗u [i] [
j−1]+u [i] [j −2]+3.∗
u [i] [j])

392 ;
393 break ;
394 default :
395 // Centered scheme :
396 fab [i] [j] −=
397 v [i] [j] / (2 . ∗ dy) ∗

(u [i] [j
+1]−u [i] [j −1])

398 ;
399 //Lax Wendroff (not used)
400 /∗ f a b [i] [j] −= −0.5∗(
401 −v [i] [j] / dy∗

(u
[i] [j+1]−u [i] [j −1])

402 +dt /(dy∗dy)∗v [i] [j]∗ v [i] [j]∗
(u [i] [j +1]−2.∗u [i] [j]+

u [i] [j −1])
403) ; ∗/
404 }
405 }

Finite-Time Singularities Page 37 Hanno Rein

406 }
407 }
408

409 // Ca l cu l a t e u out o f v
410 void haveugetv () {
411 for (int j =0; j<M; j++){
412 for (int i =0; i<N; i++)
413 uj [i]=u [i] [j] ;
414 u j d e r i v a t i v e () ;
415 for (int i =0; i<N; i++)
416 v [i] [j]= −uj [i]∗ dy ;
417 }
418

419 double temp , temp2=0. ;
420

421 for (int i =0; i<N; i++){
422 temp = v [i] [0] ;
423 v [i] [0] = 0 ;
424 v [i] [0] ∗=0.5;
425 for (int j =1; j<M; j++){
426 temp2 = v [i] [j] ;
427 v [i] [j] ∗= 0 . 5 ;
428 v [i] [j] += 0.5∗ temp + v [i] [j −1] ;
429 temp=temp2 ;
430 }
431 // cout << v [i] [M−1] << end l ;
432 //v [i] [M−1]=0;
433 }
434 }
435

436 double Y(int i) {
437 return Y((double) i /(double)N) ;
438 }
439 double Y(double x) {
440 return 1 . ;
441 }

Listing 3: picture.h
1 /∗
2 ∗ p i c t u r e . h
3 ∗ Header F i l e .
4 ∗ Created by Hanno Rein .
5 ∗
6 ∗/
7

8 double co lormap r (double) ;
9 double colormap g (double) ;

10 double colormap b (double) ;
11 void p i c tu r e (const char ∗ ,double∗∗ , int , int) ;
12

13 #define outputzoomx 4
14 #define outputzoomy 4
15 #define max color (. 2)
16 #define min co lo r (− .2)

Finite-Time Singularities Page 38 Hanno Rein

Listing 4: picture.cpp
1 /∗
2 ∗ p i c t u r e . cpp
3 ∗ Outputs p r e t t y p i c t u r e s .
4 ∗ Created by Hanno Rein .
5 ∗/
6

7 #include ” p i c tu r e . h”
8 #include ” pngwr iter . h”
9

10 // COLORMAP
11 double co lormap r (double i) {
12 i f (i >1 . | | i <0.) return 1 . ;
13 // i f (2 .∗ i <1.) re turn 1 . ;
14 i f (i <0.5) return 1.−2.∗ i ;
15 i f (i <1.0) return 2 .∗ i −1. ;
16 return 0 . ;
17 }
18 double colormap g (double i) {
19 i f (i >1 . | | i <0.) return 1 . ;
20 // i f (2 .∗ i <1.) re turn 1 . ;
21 // i f (2 .∗ i <2.) re turn 2.−2.∗ i ;
22 i f (i <0.5) return 0 . ;
23 i f (i <1.0) return 2 .∗ i −1. ;
24

25 return 1 . ;
26 }
27 double colormap b (double i) {
28 i f (i >1 . | | i <0.) return 1 . ;
29 // i f (2 .∗ i <1.) re turn 1.−2.∗ i ;
30 return 0 . ;
31 }
32

33 // Squares
34

35 void p i c tu r e (const char ∗ name , double∗∗ v , int xm, int ym) {
36 pngwriter png (outputzoomx∗xm, outputzoomy∗ym+10 ,0 ,name)

;
37 for (int i =0; i<xm; i++)
38 for (int j =0; j<ym; j++)
39 png . f i l l e d s q u a r e (i ∗outputzoomx , j ∗

outputzoomy , (i +1)∗outputzoomx , (j
+1)∗outputzoomy , co lormap r ((v [i] [j
]−min co lo r) /(max color−min co lo r)
) , colormap g ((v [i] [j]−min co lo r) /(
max color−min co lo r)) , colormap b ((
v [i] [j]−min co lo r) /(max color−
min co lo r))) ;

40 for (int i =0; i<xm; i++)
41 png . f i l l e d s q u a r e (i ∗outputzoomx , (ym) ∗

outputzoomy , (i +1)∗outputzoomx , (ym)
∗outputzoomy+10, co lormap r ((double
) i /(double)xm) , colormap g ((double)
i /(double)xm) , colormap b ((double) i

Finite-Time Singularities Page 39 Hanno Rein

/(double)xm)) ;
42 png . c l o s e () ;
43 }

